update laser cabration

This commit is contained in:
huangzhenwei2
2026-01-13 00:01:39 +08:00
parent a0019b8b0e
commit 83fe0776eb
3 changed files with 333 additions and 11 deletions

View File

@@ -175,23 +175,189 @@ class LaserManager:
if logger:
logger.error(f"闪激光失败: {e}")
def find_red_laser(self, frame, threshold=150):
"""在图像中查找最亮的红色激光点(基于 RGB 阈值)"""
# def find_red_laser(self, frame, threshold=150):
# """在图像中查找最亮的红色激光点(基于 RGB 阈值)"""
# w, h = frame.width(), frame.height()
# img_bytes = frame.to_bytes()
# max_sum = 0
# best_pos = None
# for y in range(0, h, 2):
# for x in range(0, w, 2):
# idx = (y * w + x) * 3
# r, g, b = img_bytes[idx], img_bytes[idx+1], img_bytes[idx+2]
# if r > threshold and r > g * 2 and r > b * 2:
# rgb_sum = r + g + b
# if rgb_sum > max_sum:
# max_sum = rgb_sum
# best_pos = (x, y)
# return best_pos
# def find_red_laser(self, frame, threshold=150, search_radius=50):
# """
# 在图像中心附近查找最亮的红色激光点(基于 RGB 阈值)
# Args:
# frame: 图像帧
# threshold: 红色通道阈值默认150
# search_radius: 搜索半径像素从图像中心开始搜索默认150
# Returns:
# (x, y) 坐标,如果未找到则返回 None
# """
# w, h = frame.width(), frame.height()
# center_x, center_y = w // 2, h // 2
# # 只在中心区域搜索
# x_min = max(0, center_x - search_radius)
# x_max = min(w, center_x + search_radius)
# y_min = max(0, center_y - search_radius)
# y_max = min(h, center_y + search_radius)
# img_bytes = frame.to_bytes()
# max_score = 0
# best_pos = None
# for y in range(y_min, y_max, 2):
# for x in range(x_min, x_max, 2):
# idx = (y * w + x) * 3
# r, g, b = img_bytes[idx], img_bytes[idx+1], img_bytes[idx+2]
# # 判断是否为红色或过曝的红色(发白)
# is_red = False
# is_overexposed_red = False
# # 情况1正常红色r 明显大于 g 和 b
# if r > threshold and r > g * 2 and r > b * 2:
# is_red = True
# # 情况2过曝的红色发白r, g, b 都接近255但 r 仍然最大)
# # 过曝时r, g, b 都接近 255但 r 应该仍然是最高的
# elif r > 200 and g > 200 and b > 200: # 接近白色
# if r >= g and r >= b and (r - g) > 10 and (r - b) > 10: # r 仍然明显最大
# is_overexposed_red = True
# if is_red or is_overexposed_red:
# # 计算得分RGB 总和 + 距离中心权重(越靠近中心得分越高)
# rgb_sum = r + g + b
# # 计算到中心的距离
# dx = x - center_x
# dy = y - center_y
# distance_from_center = (dx * dx + dy * dy) ** 0.5
# # 距离权重:距离越近,权重越高(最大权重为 1.0,距离为 0 时)
# # 当距离为 search_radius 时,权重为 0.5
# distance_weight = 1.0 - (distance_from_center / search_radius) * 0.5
# distance_weight = max(0.5, distance_weight) # 最小权重 0.5
# # 综合得分RGB 总和 * 距离权重
# score = rgb_sum * distance_weight
# if score > max_score:
# max_score = score
# best_pos = (x, y)
# print("best_pos:", best_pos)
# return best_pos
def find_red_laser(self, frame, threshold=150, search_radius=150):
"""
在图像中心附近查找最亮的红色激光点(基于 RGB 阈值)
使用两阶段搜索:先粗搜索找到候选区域,再精细搜索找到最亮点
Args:
frame: 图像帧
threshold: 红色通道阈值默认150
search_radius: 搜索半径像素从图像中心开始搜索默认150
Returns:
(x, y) 坐标,如果未找到则返回 None
"""
w, h = frame.width(), frame.height()
center_x, center_y = w // 2, h // 2
# 只在中心区域搜索
x_min = max(0, center_x - search_radius)
x_max = min(w, center_x + search_radius)
y_min = max(0, center_y - search_radius)
y_max = min(h, center_y + search_radius)
img_bytes = frame.to_bytes()
max_sum = 0
best_pos = None
for y in range(0, h, 2):
for x in range(0, w, 2):
max_score = 0
candidate_pos = None
# 第一阶段粗搜索每2像素采样找到候选点
for y in range(y_min, y_max, 2):
for x in range(x_min, x_max, 2):
idx = (y * w + x) * 3
r, g, b = img_bytes[idx], img_bytes[idx+1], img_bytes[idx+2]
# 判断是否为红色或过曝的红色(发白)
is_red = False
is_overexposed_red = False
# 情况1正常红色r 明显大于 g 和 b
if r > threshold and r > g * 2 and r > b * 2:
is_red = True
# 情况2过曝的红色发白r, g, b 都接近255但 r 仍然最大)
elif r > 200 and g > 200 and b > 200: # 接近白色
if r >= g and r >= b and (r - g) > 10 and (r - b) > 10: # r 仍然明显最大
is_overexposed_red = True
if is_red or is_overexposed_red:
# 计算得分RGB 总和 + 距离中心权重
rgb_sum = r + g + b
if rgb_sum > max_sum:
max_sum = rgb_sum
dx = x - center_x
dy = y - center_y
distance_from_center = (dx * dx + dy * dy) ** 0.5
distance_weight = 1.0 - (distance_from_center / search_radius) * 0.5
distance_weight = max(0.5, distance_weight)
score = rgb_sum * distance_weight
if score > max_score:
max_score = score
candidate_pos = (x, y)
# 如果没有找到候选点,直接返回
if candidate_pos is None:
return None
# 第二阶段在候选点周围进行精细搜索1像素间隔
# 在候选点周围 5x5 或 7x7 区域内找最亮的点
refine_radius = 3 # 精细搜索半径(像素)
cx, cy = candidate_pos
x_min_fine = max(0, cx - refine_radius)
x_max_fine = min(w, cx + refine_radius + 1)
y_min_fine = max(0, cy - refine_radius)
y_max_fine = min(h, cy + refine_radius + 1)
max_brightness = 0
best_pos = candidate_pos
# 精细搜索1像素间隔只考虑亮度RGB总和
for y in range(y_min_fine, y_max_fine, 1):
for x in range(x_min_fine, x_max_fine, 1):
idx = (y * w + x) * 3
r, g, b = img_bytes[idx], img_bytes[idx+1], img_bytes[idx+2]
# 判断是否为红色或过曝的红色
is_red = False
is_overexposed_red = False
if r > threshold and r > g * 2 and r > b * 2:
is_red = True
elif r > 200 and g > 200 and b > 200:
if r >= g and r >= b and (r - g) > 10 and (r - b) > 10:
is_overexposed_red = True
if is_red or is_overexposed_red:
rgb_sum = r + g + b
# 精细搜索阶段只考虑亮度,不考虑距离权重
if rgb_sum > max_brightness:
max_brightness = rgb_sum
best_pos = (x, y)
return best_pos
def calibrate_laser_position(self):
"""执行一次激光校准:拍照 → 找红点 → 保存坐标"""
time.sleep_ms(80)