Files
archery/vision.py

696 lines
31 KiB
Python
Raw Normal View History

2026-01-12 11:39:27 +08:00
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
视觉检测模块
提供靶心检测距离估算图像保存等功能
"""
import cv2
import numpy as np
import os
import math
from maix import image
import config
from logger_manager import logger_manager
2026-01-20 11:25:17 +08:00
def check_laser_point_sharpness(frame, laser_point=None, roi_size=30, threshold=100.0, ellipse_params=None):
"""
检测激光点本身的清晰度不是整个靶子
Args:
frame: 图像帧对象
laser_point: 激光点坐标 (x, y)如果为None则自动查找
roi_size: ROI区域大小像素默认30x30
threshold: 清晰度阈值
ellipse_params: 椭圆参数 ((center_x, center_y), (width, height), angle)用于限制激光点必须在椭圆内
Returns:
(is_sharp, sharpness_score, laser_pos): (是否清晰, 清晰度分数, 激光点坐标)
"""
try:
# 1. 如果没有提供激光点,先查找
if laser_point is None:
from laser_manager import laser_manager
laser_point = laser_manager.find_red_laser(frame, ellipse_params=ellipse_params)
if laser_point is None:
logger_manager.logger.debug(f"未找到激光点")
return False, 0.0, None
x, y = laser_point
# 2. 转换为 OpenCV 格式
img_cv = image.image2cv(frame, False, False)
h, w = img_cv.shape[:2]
# 3. 提取 ROI 区域(激光点周围)
roi_half = roi_size // 2
x_min = max(0, int(x) - roi_half)
x_max = min(w, int(x) + roi_half)
y_min = max(0, int(y) - roi_half)
y_max = min(h, int(y) + roi_half)
roi = img_cv[y_min:y_max, x_min:x_max]
if roi.size == 0:
return False, 0.0, laser_point
# 4. 转换为灰度图(用于清晰度检测)
gray_roi = cv2.cvtColor(roi, cv2.COLOR_RGB2GRAY)
# 5. 方法1检测点的扩散程度能量集中度
# 计算中心区域的能量集中度
center_x, center_y = roi.shape[1] // 2, roi.shape[0] // 2
center_radius = min(5, roi.shape[0] // 4) # 中心区域半径
# 创建中心区域的掩码
y_coords, x_coords = np.ogrid[:roi.shape[0], :roi.shape[1]]
center_mask = (x_coords - center_x)**2 + (y_coords - center_y)**2 <= center_radius**2
# 计算中心区域和周围区域的亮度
center_brightness = gray_roi[center_mask].mean()
outer_mask = ~center_mask
outer_brightness = gray_roi[outer_mask].mean() if np.any(outer_mask) else 0
# 对比度(清晰的点对比度高)
contrast = abs(center_brightness - outer_brightness)
# 6. 方法2检测点的边缘锐度使用拉普拉斯
laplacian = cv2.Laplacian(gray_roi, cv2.CV_64F)
edge_sharpness = abs(laplacian).var()
# 7. 方法3检测点的能量集中度方差
# 清晰的点:能量集中在中心,方差小
# 模糊的点:能量分散,方差大
# 但我们需要的是:清晰的点中心亮度高,周围低,所以梯度大
sobel_x = cv2.Sobel(gray_roi, cv2.CV_64F, 1, 0, ksize=3)
sobel_y = cv2.Sobel(gray_roi, cv2.CV_64F, 0, 1, ksize=3)
gradient = np.sqrt(sobel_x**2 + sobel_y**2)
gradient_sharpness = gradient.var()
# 8. 组合多个指标
# 对比度权重0.3边缘锐度权重0.4梯度权重0.3
sharpness_score = (contrast * 0.3 + edge_sharpness * 0.4 + gradient_sharpness * 0.3)
is_sharp = sharpness_score >= threshold
logger = logger_manager.logger
if logger:
logger.debug(f"[VISION] 激光点清晰度: 位置=({x}, {y}), 对比度={contrast:.2f}, 边缘={edge_sharpness:.2f}, 梯度={gradient_sharpness:.2f}, 综合={sharpness_score:.2f}, 是否清晰={is_sharp}")
return is_sharp, sharpness_score, laser_point
except Exception as e:
logger = logger_manager.logger
if logger:
logger.error(f"[VISION] 激光点清晰度检测失败: {e}")
import traceback
logger.error(traceback.format_exc())
return False, 0.0, laser_point
def check_image_sharpness(frame, threshold=100.0, save_debug_images=False):
"""
检查图像清晰度针对圆形靶子优化基于圆形边缘检测
检测靶心的圆形边缘计算边缘区域的梯度清晰度
Args:
frame: 图像帧对象
threshold: 清晰度阈值低于此值认为图像模糊默认100.0
可以根据实际情况调整
- 清晰图像通常 > 200
- 模糊图像通常 < 100
- 中等清晰度 100-200
save_debug_images: 是否保存调试图像原始图和边缘图默认False
Returns:
(is_sharp, sharpness_score): (是否清晰, 清晰度分数)
"""
try:
logger_manager.logger.debug(f"begin")
# 转换为 OpenCV 格式
img_cv = image.image2cv(frame, False, False)
logger_manager.logger.debug(f"after image2cv")
# 转换为 HSV 颜色空间
hsv = cv2.cvtColor(img_cv, cv2.COLOR_RGB2HSV)
h, s, v = cv2.split(hsv)
logger_manager.logger.debug(f"after HSV conversion")
# 检测黄色区域(靶心)
# 调整饱和度策略:稍微增强,不要过度
s_enhanced = np.clip(s * 1.1, 0, 255).astype(np.uint8)
hsv_enhanced = cv2.merge((h, s_enhanced, v))
# HSV 阈值范围(与 detect_circle_v3 保持一致)
lower_yellow = np.array([7, 80, 0])
upper_yellow = np.array([32, 255, 255])
mask_yellow = cv2.inRange(hsv_enhanced, lower_yellow, upper_yellow)
# 形态学操作,填充小孔洞
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (5, 5))
mask_yellow = cv2.morphologyEx(mask_yellow, cv2.MORPH_CLOSE, kernel)
logger_manager.logger.debug(f"after yellow mask detection")
# 计算边缘区域:扩展黄色区域,然后减去原始区域,得到边缘区域
mask_dilated = cv2.dilate(mask_yellow, kernel, iterations=2)
mask_edge = cv2.subtract(mask_dilated, mask_yellow) # 边缘区域
# 计算边缘区域的像素数量
edge_pixel_count = np.sum(mask_edge > 0)
logger_manager.logger.debug(f"edge pixel count: {edge_pixel_count}")
# 如果检测不到边缘区域,使用全局梯度作为后备方案
if edge_pixel_count < 100:
logger_manager.logger.debug(f"edge region too small, using global gradient")
# 使用 V 通道计算全局梯度
sobel_v_x = cv2.Sobel(v, cv2.CV_64F, 1, 0, ksize=3)
sobel_v_y = cv2.Sobel(v, cv2.CV_64F, 0, 1, ksize=3)
gradient = np.sqrt(sobel_v_x**2 + sobel_v_y**2)
sharpness_score = gradient.var()
logger_manager.logger.debug(f"global gradient variance: {sharpness_score:.2f}")
else:
# 在边缘区域计算梯度清晰度
# 使用 V亮度通道计算梯度因为边缘在亮度上通常很明显
sobel_v_x = cv2.Sobel(v, cv2.CV_64F, 1, 0, ksize=3)
sobel_v_y = cv2.Sobel(v, cv2.CV_64F, 0, 1, ksize=3)
gradient = np.sqrt(sobel_v_x**2 + sobel_v_y**2)
# 只在边缘区域计算清晰度
edge_gradient = gradient[mask_edge > 0]
if len(edge_gradient) > 0:
# 计算边缘梯度的方差(清晰图像的边缘梯度变化大)
sharpness_score = edge_gradient.var()
# 也可以使用均值作为补充指标(清晰图像的边缘梯度均值也较大)
gradient_mean = edge_gradient.mean()
logger_manager.logger.debug(f"edge gradient: mean={gradient_mean:.2f}, var={sharpness_score:.2f}, pixels={len(edge_gradient)}")
else:
# 如果边缘区域没有有效梯度,使用全局梯度
sharpness_score = gradient.var()
logger_manager.logger.debug(f"no edge gradient, using global: {sharpness_score:.2f}")
# 保存调试图像(如果启用)
if save_debug_images:
try:
debug_dir = config.PHOTO_DIR
if debug_dir not in os.listdir("/root"):
try:
os.mkdir(debug_dir)
except:
pass
# 生成文件名
try:
all_images = [f for f in os.listdir(debug_dir) if f.endswith(('.bmp', '.jpg', '.jpeg'))]
img_count = len(all_images)
except:
img_count = 0
# 保存原始图像
img_orig = image.cv2image(img_cv, False, False)
orig_filename = f"{debug_dir}/sharpness_debug_orig_{img_count:04d}.bmp"
img_orig.save(orig_filename)
# # 保存边缘检测结果(可视化)
# # 创建可视化图像:原始图像 + 黄色区域 + 边缘区域
# debug_img = img_cv.copy()
# # 在黄色区域绘制绿色
# debug_img[mask_yellow > 0] = [0, 255, 0] # RGB格式绿色
# # 在边缘区域绘制红色
# debug_img[mask_edge > 0] = [255, 0, 0] # RGB格式红色
# debug_img_maix = image.cv2image(debug_img, False, False)
# debug_filename = f"{debug_dir}/sharpness_debug_edge_{img_count:04d}.bmp"
# debug_img_maix.save(debug_filename)
# logger = logger_manager.logger
# if logger:
# logger.info(f"[VISION] 保存调试图像: {orig_filename}, {debug_filename}")
except Exception as e:
logger = logger_manager.logger
if logger:
logger.warning(f"[VISION] 保存调试图像失败: {e}")
import traceback
logger.error(traceback.format_exc())
is_sharp = sharpness_score >= threshold
logger = logger_manager.logger
if logger:
logger.debug(f"[VISION] 清晰度检测: 分数={sharpness_score:.2f}, 边缘像素数={edge_pixel_count}, 是否清晰={is_sharp}, 阈值={threshold}")
return is_sharp, sharpness_score
except Exception as e:
logger = logger_manager.logger
if logger:
logger.error(f"[VISION] 清晰度检测失败: {e}")
import traceback
logger.error(traceback.format_exc())
# 出错时返回 False避免使用模糊图像
return False, 0.0
2026-01-13 00:01:39 +08:00
def save_calibration_image(frame, laser_pos, photo_dir=None):
"""
保存激光校准图像带标注
在找到的激光点位置绘制圆圈便于检查算法是否正确
Args:
frame: 原始图像帧
laser_pos: 找到的激光点坐标 (x, y)
photo_dir: 照片存储目录如果为None则使用 config.PHOTO_DIR
Returns:
str: 保存的文件路径如果保存失败则返回 None
"""
# 检查是否启用图像保存
if not config.SAVE_IMAGE_ENABLED:
return None
if photo_dir is None:
photo_dir = config.PHOTO_DIR
try:
# 确保照片目录存在
try:
if photo_dir not in os.listdir("/root"):
os.mkdir(photo_dir)
except:
pass
# 生成文件名
try:
all_images = [f for f in os.listdir(photo_dir) if f.endswith(('.bmp', '.jpg', '.jpeg'))]
img_count = len(all_images)
except:
img_count = 0
x, y = laser_pos
filename = f"{photo_dir}/calibration_{int(x)}_{int(y)}_{img_count:04d}.bmp"
logger = logger_manager.logger
if logger:
logger.info(f"保存校准图像: {filename}, 激光点: ({x}, {y})")
# 转换图像为 OpenCV 格式以便绘制
img_cv = image.image2cv(frame, False, False)
# 绘制激光点圆圈(用绿色圆圈标出找到的激光点)
cv2.circle(img_cv, (int(x), int(y)), 10, (0, 255, 0), 2) # 外圈绿色半径10
cv2.circle(img_cv, (int(x), int(y)), 5, (0, 255, 0), 2) # 中圈绿色半径5
cv2.circle(img_cv, (int(x), int(y)), 2, (0, 255, 0), -1) # 中心点:绿色实心
# 可选:绘制十字线帮助定位
cv2.line(img_cv,
(int(x - 20), int(y)),
(int(x + 20), int(y)),
(0, 255, 0), 1) # 水平线
cv2.line(img_cv,
(int(x), int(y - 20)),
(int(x), int(y + 20)),
(0, 255, 0), 1) # 垂直线
# 转换回 MaixPy 图像格式并保存
result_img = image.cv2image(img_cv, False, False)
result_img.save(filename)
if logger:
logger.debug(f"校准图像已保存: {filename}")
return filename
except Exception as e:
logger = logger_manager.logger
if logger:
logger.error(f"保存校准图像失败: {e}")
import traceback
logger.error(traceback.format_exc())
return None
2026-01-12 11:39:27 +08:00
def detect_circle_v3(frame, laser_point=None):
"""检测图像中的靶心(优先清晰轮廓,其次黄色区域)- 返回椭圆参数版本
增加红色圆圈检测验证黄色圆圈是否为真正的靶心
如果提供 laser_point会选择最接近激光点的目标
Args:
frame: 图像帧
laser_point: 激光点坐标 (x, y)用于多目标场景下的目标选择
Returns:
(result_img, best_center, best_radius, method, best_radius1, ellipse_params)
"""
img_cv = image.image2cv(frame, False, False)
best_center = best_radius = best_radius1 = method = None
ellipse_params = None
# HSV 黄色掩码检测(模糊靶心)
hsv = cv2.cvtColor(img_cv, cv2.COLOR_RGB2HSV)
h, s, v = cv2.split(hsv)
# 调整饱和度策略:稍微增强,不要过度
s = np.clip(s * 1.1, 0, 255).astype(np.uint8)
hsv = cv2.merge((h, s, v))
# 放宽 HSV 阈值范围(针对模糊图像的关键调整)
lower_yellow = np.array([7, 80, 0]) # 饱和度下限降低,捕捉淡黄色
upper_yellow = np.array([32, 255, 255]) # 亮度上限拉满
mask_yellow = cv2.inRange(hsv, lower_yellow, upper_yellow)
# 调整形态学操作
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (5, 5))
mask_yellow = cv2.morphologyEx(mask_yellow, cv2.MORPH_CLOSE, kernel)
contours_yellow, _ = cv2.findContours(mask_yellow, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
# 存储所有有效的黄色-红色组合
valid_targets = []
if contours_yellow:
for cnt_yellow in contours_yellow:
area = cv2.contourArea(cnt_yellow)
perimeter = cv2.arcLength(cnt_yellow, True)
# 计算圆度
if perimeter > 0:
circularity = (4 * np.pi * area) / (perimeter * perimeter)
else:
circularity = 0
logger = logger_manager.logger
if area > 50 and circularity > 0.7:
if logger:
logger.info(f"[target] -> 面积:{area}, 圆度:{circularity:.2f}")
# 尝试拟合椭圆
yellow_center = None
yellow_radius = None
yellow_ellipse = None
if len(cnt_yellow) >= 5:
(x, y), (width, height), angle = cv2.fitEllipse(cnt_yellow)
yellow_ellipse = ((x, y), (width, height), angle)
axes_minor = min(width, height)
radius = axes_minor / 2
yellow_center = (int(x), int(y))
yellow_radius = int(radius)
else:
(x, y), radius = cv2.minEnclosingCircle(cnt_yellow)
yellow_center = (int(x), int(y))
yellow_radius = int(radius)
yellow_ellipse = None
# 如果检测到黄色圆圈,再检测红色圆圈进行验证
if yellow_center and yellow_radius:
# HSV 红色掩码检测红色在HSV中跨越0度需要两个范围
# 红色范围1: 0-10度接近0度的红色
lower_red1 = np.array([0, 80, 0])
upper_red1 = np.array([10, 255, 255])
mask_red1 = cv2.inRange(hsv, lower_red1, upper_red1)
# 红色范围2: 170-180度接近180度的红色
lower_red2 = np.array([170, 80, 0])
upper_red2 = np.array([180, 255, 255])
mask_red2 = cv2.inRange(hsv, lower_red2, upper_red2)
# 合并两个红色掩码
mask_red = cv2.bitwise_or(mask_red1, mask_red2)
# 形态学操作
kernel_red = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (5, 5))
mask_red = cv2.morphologyEx(mask_red, cv2.MORPH_CLOSE, kernel_red)
contours_red, _ = cv2.findContours(mask_red, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
found_valid_red = False
if contours_red:
# 找到所有符合条件的红色圆圈
for cnt_red in contours_red:
area_red = cv2.contourArea(cnt_red)
perimeter_red = cv2.arcLength(cnt_red, True)
if perimeter_red > 0:
circularity_red = (4 * np.pi * area_red) / (perimeter_red * perimeter_red)
else:
circularity_red = 0
# 红色圆圈也应该有一定的圆度
if area_red > 50 and circularity_red > 0.6:
# 计算红色圆圈的中心和半径
if len(cnt_red) >= 5:
(x_red, y_red), (w_red, h_red), angle_red = cv2.fitEllipse(cnt_red)
radius_red = min(w_red, h_red) / 2
red_center = (int(x_red), int(y_red))
red_radius = int(radius_red)
else:
(x_red, y_red), radius_red = cv2.minEnclosingCircle(cnt_red)
red_center = (int(x_red), int(y_red))
red_radius = int(radius_red)
# 计算黄色和红色圆心的距离
if red_center:
dx = yellow_center[0] - red_center[0]
dy = yellow_center[1] - red_center[1]
distance = np.sqrt(dx*dx + dy*dy)
# 圆心距离阈值应该小于黄色半径的某个倍数比如1.5倍)
max_distance = yellow_radius * 1.5
# 红色圆圈应该比黄色圆圈大(外圈)
if distance < max_distance and red_radius > yellow_radius * 0.8:
found_valid_red = True
logger = logger_manager.logger
if logger:
logger.info(f"[target] -> 找到匹配的红圈: 黄心({yellow_center}), 红心({red_center}), 距离:{distance:.1f}, 黄半径:{yellow_radius}, 红半径:{red_radius}")
# 记录这个有效目标
valid_targets.append({
'center': yellow_center,
'radius': yellow_radius,
'ellipse': yellow_ellipse,
'area': area
})
break
if not found_valid_red:
logger = logger_manager.logger
if logger:
logger.debug("Debug -> 未找到匹配的红色圆圈,可能是误识别")
# 从所有有效目标中选择最佳目标
if valid_targets:
if laser_point:
# 如果有激光点,选择最接近激光点的目标
best_target = None
min_distance = float('inf')
for target in valid_targets:
dx = target['center'][0] - laser_point[0]
dy = target['center'][1] - laser_point[1]
distance = np.sqrt(dx*dx + dy*dy)
if distance < min_distance:
min_distance = distance
best_target = target
if best_target:
best_center = best_target['center']
best_radius = best_target['radius']
ellipse_params = best_target['ellipse']
method = "v3_ellipse_red_validated_laser_selected"
best_radius1 = best_radius * 5
else:
# 如果没有激光点,选择面积最大的目标
best_target = max(valid_targets, key=lambda t: t['area'])
best_center = best_target['center']
best_radius = best_target['radius']
ellipse_params = best_target['ellipse']
method = "v3_ellipse_red_validated"
best_radius1 = best_radius * 5
result_img = image.cv2image(img_cv, False, False)
return result_img, best_center, best_radius, method, best_radius1, ellipse_params
def estimate_distance(pixel_radius):
"""根据像素半径估算实际距离(单位:米)"""
if not pixel_radius:
return 0.0
return (config.REAL_RADIUS_CM * config.FOCAL_LENGTH_PIX) / pixel_radius / 100.0
2026-01-20 11:25:17 +08:00
def estimate_pixel(physical_distance_cm, target_distance_m):
"""
根据物理距离和目标距离计算对应的像素偏移
Args:
physical_distance_cm: 物理世界中的距离厘米例如激光与摄像头的距离
target_distance_m: 目标距离例如到靶心的距离
Returns:
float: 对应的像素偏移
"""
if not target_distance_m or target_distance_m <= 0:
return 0.0
# 公式:像素偏移 = (物理距离_米) * 焦距_像素 / 目标距离_米
return (physical_distance_cm / 100.0) * config.FOCAL_LENGTH_PIX / target_distance_m
2026-01-12 11:39:27 +08:00
def save_shot_image(result_img, center, radius, method, ellipse_params,
2026-01-20 11:25:17 +08:00
laser_point, distance_m, shot_id=None, photo_dir=None):
2026-01-12 11:39:27 +08:00
"""
保存射击图像带标注
即使没有检测到靶心也会保存图像文件名会标注 "no_target"
确保保存的图像总是包含激光十字线
Args:
result_img: 处理后的图像对象可能已经包含激光十字线或检测标注
center: 靶心中心坐标 (x, y)可能为 None未检测到靶心
radius: 靶心半径可能为 None未检测到靶心
method: 检测方法可能为 None未检测到靶心
ellipse_params: 椭圆参数 ((center, (width, height), angle)) None
laser_point: 激光点坐标 (x, y)
distance_m: 距离可能为 None未检测到靶心
2026-01-20 11:25:17 +08:00
shot_id: 射箭ID如果提供则用作文件名否则使用旧的文件名格式
2026-01-12 11:39:27 +08:00
photo_dir: 照片存储目录如果为None则使用 config.PHOTO_DIR
Returns:
str: 保存的文件路径如果保存失败或未启用则返回 None
"""
# 检查是否启用图像保存
if not config.SAVE_IMAGE_ENABLED:
return None
if photo_dir is None:
photo_dir = config.PHOTO_DIR
try:
# 确保照片目录存在
try:
if photo_dir not in os.listdir("/root"):
os.mkdir(photo_dir)
except:
pass
x, y = laser_point
2026-01-20 11:25:17 +08:00
# 生成文件名:优先使用 shot_id否则使用旧格式
if shot_id:
# 使用射箭ID作为文件名
# 如果未检测到靶心,在文件名中标注
if center is None or radius is None:
filename = f"{photo_dir}/shot_{shot_id}_no_target.bmp"
else:
method_str = method or "unknown"
filename = f"{photo_dir}/shot_{shot_id}_{method_str}.bmp"
2026-01-12 11:39:27 +08:00
else:
2026-01-20 11:25:17 +08:00
# 旧的文件名格式(向后兼容)
try:
all_images = [f for f in os.listdir(photo_dir) if f.endswith(('.bmp', '.jpg', '.jpeg'))]
img_count = len(all_images)
except:
img_count = 0
# 如果未检测到靶心,在文件名中标注
if center is None or radius is None:
method_str = "no_target"
distance_str = "000"
else:
method_str = method or "unknown"
distance_str = str(round((distance_m or 0.0) * 100))
filename = f"{photo_dir}/{method_str}_{int(x)}_{int(y)}_{distance_str}_{img_count:04d}.bmp"
2026-01-12 11:39:27 +08:00
logger = logger_manager.logger
if logger:
2026-01-20 11:25:17 +08:00
if shot_id:
logger.info(f"[VISION] 保存射箭图像ID: {shot_id}, 文件名: {filename}")
2026-01-12 11:39:27 +08:00
if center and radius:
logger.info(f"结果 -> 圆心: {center}, 半径: {radius}, 方法: {method}")
if ellipse_params:
(ell_center, (width, height), angle) = ellipse_params
logger.info(f"椭圆 -> 中心: ({ell_center[0]:.1f}, {ell_center[1]:.1f}), 长轴: {max(width, height):.1f}, 短轴: {min(width, height):.1f}, 角度: {angle:.1f}°")
else:
logger.info(f"结果 -> 未检测到靶心,保存原始图像(激光点: ({x}, {y})")
# 转换图像为 OpenCV 格式以便绘制
img_cv = image.image2cv(result_img, False, False)
2026-01-20 11:25:17 +08:00
# # 确保激光十字线被绘制使用OpenCV在图像上绘制确保可见性
# laser_color = (config.LASER_COLOR[0], config.LASER_COLOR[1], config.LASER_COLOR[2])
# thickness = max(config.LASER_THICKNESS, 2) # 至少2像素宽确保可见
# length = max(config.LASER_LENGTH, 10) # 至少10像素长
# # 绘制激光十字线(水平线)
# cv2.line(img_cv,
# (int(x - length), int(y)),
# (int(x + length), int(y)),
# laser_color, thickness)
# # 绘制激光十字线(垂直线)
# cv2.line(img_cv,
# (int(x), int(y - length)),
# (int(x), int(y + length)),
# laser_color, thickness)
# # 绘制激光点
# cv2.circle(img_cv, (int(x), int(y)), max(thickness, 3), laser_color, -1)
# 在 vision.py 的 save_shot_image 函数中替换第598-614行的代码
# 绘制激光点标注(使用空心圆圈,类似校准时的标注方式)
2026-01-12 11:39:27 +08:00
laser_color = (config.LASER_COLOR[0], config.LASER_COLOR[1], config.LASER_COLOR[2])
2026-01-20 11:25:17 +08:00
thickness = 1 # 圆圈线宽
2026-01-12 11:39:27 +08:00
2026-01-20 11:25:17 +08:00
# 绘制外圈半径10空心
cv2.circle(img_cv, (int(x), int(y)), 10, laser_color, thickness)
# 绘制中圈半径5空心
cv2.circle(img_cv, (int(x), int(y)), 5, laser_color, thickness)
# 绘制中心点半径2实心用于精确定位
cv2.circle(img_cv, (int(x), int(y)), 2, laser_color, -1)
2026-01-12 11:39:27 +08:00
# 如果检测到靶心,绘制靶心标注
if center and radius:
cx, cy = center
if ellipse_params:
(ell_center, (width, height), angle) = ellipse_params
cx_ell, cy_ell = int(ell_center[0]), int(ell_center[1])
# 绘制椭圆
cv2.ellipse(img_cv,
(cx_ell, cy_ell),
(int(width/2), int(height/2)),
angle,
0, 360,
(0, 255, 0),
2)
cv2.circle(img_cv, (cx_ell, cy_ell), 3, (255, 0, 0), -1)
# 绘制短轴
minor_length = min(width, height) / 2
minor_angle = angle + 90 if width >= height else angle
minor_angle_rad = math.radians(minor_angle)
dx_minor = minor_length * math.cos(minor_angle_rad)
dy_minor = minor_length * math.sin(minor_angle_rad)
pt1_minor = (int(cx_ell - dx_minor), int(cy_ell - dy_minor))
pt2_minor = (int(cx_ell + dx_minor), int(cy_ell + dy_minor))
cv2.line(img_cv, pt1_minor, pt2_minor, (0, 0, 255), 2)
else:
# 绘制圆形靶心
cv2.circle(img_cv, (cx, cy), radius, (0, 0, 255), 2)
cv2.circle(img_cv, (cx, cy), 2, (0, 0, 255), -1)
# 如果检测到靶心,绘制从激光点到靶心的连线(可选,用于可视化偏移)
cv2.line(img_cv, (int(x), int(y)), (cx, cy), (255, 255, 0), 1)
# 转换回 MaixPy 图像格式并保存
result_img = image.cv2image(img_cv, False, False)
result_img.save(filename)
if logger:
if center and radius:
logger.debug(f"图像已保存(含靶心标注): {filename}")
else:
logger.debug(f"图像已保存(无靶心,含激光十字线): {filename}")
return filename
except Exception as e:
logger = logger_manager.logger
if logger:
logger.error(f"保存图像失败: {e}")
import traceback
logger.error(traceback.format_exc())
return None