Files
archery/vision.py

361 lines
16 KiB
Python
Raw Normal View History

2026-01-12 11:39:27 +08:00
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
视觉检测模块
提供靶心检测距离估算图像保存等功能
"""
import cv2
import numpy as np
import os
import math
from maix import image
import globals
import config
from logger_manager import logger_manager
def detect_circle_v3(frame, laser_point=None):
"""检测图像中的靶心(优先清晰轮廓,其次黄色区域)- 返回椭圆参数版本
增加红色圆圈检测验证黄色圆圈是否为真正的靶心
如果提供 laser_point会选择最接近激光点的目标
Args:
frame: 图像帧
laser_point: 激光点坐标 (x, y)用于多目标场景下的目标选择
Returns:
(result_img, best_center, best_radius, method, best_radius1, ellipse_params)
"""
img_cv = image.image2cv(frame, False, False)
best_center = best_radius = best_radius1 = method = None
ellipse_params = None
# HSV 黄色掩码检测(模糊靶心)
hsv = cv2.cvtColor(img_cv, cv2.COLOR_RGB2HSV)
h, s, v = cv2.split(hsv)
# 调整饱和度策略:稍微增强,不要过度
s = np.clip(s * 1.1, 0, 255).astype(np.uint8)
hsv = cv2.merge((h, s, v))
# 放宽 HSV 阈值范围(针对模糊图像的关键调整)
lower_yellow = np.array([7, 80, 0]) # 饱和度下限降低,捕捉淡黄色
upper_yellow = np.array([32, 255, 255]) # 亮度上限拉满
mask_yellow = cv2.inRange(hsv, lower_yellow, upper_yellow)
# 调整形态学操作
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (5, 5))
mask_yellow = cv2.morphologyEx(mask_yellow, cv2.MORPH_CLOSE, kernel)
contours_yellow, _ = cv2.findContours(mask_yellow, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
# 存储所有有效的黄色-红色组合
valid_targets = []
if contours_yellow:
for cnt_yellow in contours_yellow:
area = cv2.contourArea(cnt_yellow)
perimeter = cv2.arcLength(cnt_yellow, True)
# 计算圆度
if perimeter > 0:
circularity = (4 * np.pi * area) / (perimeter * perimeter)
else:
circularity = 0
logger = logger_manager.logger
if area > 50 and circularity > 0.7:
if logger:
logger.info(f"[target] -> 面积:{area}, 圆度:{circularity:.2f}")
# 尝试拟合椭圆
yellow_center = None
yellow_radius = None
yellow_ellipse = None
if len(cnt_yellow) >= 5:
(x, y), (width, height), angle = cv2.fitEllipse(cnt_yellow)
yellow_ellipse = ((x, y), (width, height), angle)
axes_minor = min(width, height)
radius = axes_minor / 2
yellow_center = (int(x), int(y))
yellow_radius = int(radius)
else:
(x, y), radius = cv2.minEnclosingCircle(cnt_yellow)
yellow_center = (int(x), int(y))
yellow_radius = int(radius)
yellow_ellipse = None
# 如果检测到黄色圆圈,再检测红色圆圈进行验证
if yellow_center and yellow_radius:
# HSV 红色掩码检测红色在HSV中跨越0度需要两个范围
# 红色范围1: 0-10度接近0度的红色
lower_red1 = np.array([0, 80, 0])
upper_red1 = np.array([10, 255, 255])
mask_red1 = cv2.inRange(hsv, lower_red1, upper_red1)
# 红色范围2: 170-180度接近180度的红色
lower_red2 = np.array([170, 80, 0])
upper_red2 = np.array([180, 255, 255])
mask_red2 = cv2.inRange(hsv, lower_red2, upper_red2)
# 合并两个红色掩码
mask_red = cv2.bitwise_or(mask_red1, mask_red2)
# 形态学操作
kernel_red = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (5, 5))
mask_red = cv2.morphologyEx(mask_red, cv2.MORPH_CLOSE, kernel_red)
contours_red, _ = cv2.findContours(mask_red, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
found_valid_red = False
if contours_red:
# 找到所有符合条件的红色圆圈
for cnt_red in contours_red:
area_red = cv2.contourArea(cnt_red)
perimeter_red = cv2.arcLength(cnt_red, True)
if perimeter_red > 0:
circularity_red = (4 * np.pi * area_red) / (perimeter_red * perimeter_red)
else:
circularity_red = 0
# 红色圆圈也应该有一定的圆度
if area_red > 50 and circularity_red > 0.6:
# 计算红色圆圈的中心和半径
if len(cnt_red) >= 5:
(x_red, y_red), (w_red, h_red), angle_red = cv2.fitEllipse(cnt_red)
radius_red = min(w_red, h_red) / 2
red_center = (int(x_red), int(y_red))
red_radius = int(radius_red)
else:
(x_red, y_red), radius_red = cv2.minEnclosingCircle(cnt_red)
red_center = (int(x_red), int(y_red))
red_radius = int(radius_red)
# 计算黄色和红色圆心的距离
if red_center:
dx = yellow_center[0] - red_center[0]
dy = yellow_center[1] - red_center[1]
distance = np.sqrt(dx*dx + dy*dy)
# 圆心距离阈值应该小于黄色半径的某个倍数比如1.5倍)
max_distance = yellow_radius * 1.5
# 红色圆圈应该比黄色圆圈大(外圈)
if distance < max_distance and red_radius > yellow_radius * 0.8:
found_valid_red = True
logger = logger_manager.logger
if logger:
logger.info(f"[target] -> 找到匹配的红圈: 黄心({yellow_center}), 红心({red_center}), 距离:{distance:.1f}, 黄半径:{yellow_radius}, 红半径:{red_radius}")
# 记录这个有效目标
valid_targets.append({
'center': yellow_center,
'radius': yellow_radius,
'ellipse': yellow_ellipse,
'area': area
})
break
if not found_valid_red:
logger = logger_manager.logger
if logger:
logger.debug("Debug -> 未找到匹配的红色圆圈,可能是误识别")
# 从所有有效目标中选择最佳目标
if valid_targets:
if laser_point:
# 如果有激光点,选择最接近激光点的目标
best_target = None
min_distance = float('inf')
for target in valid_targets:
dx = target['center'][0] - laser_point[0]
dy = target['center'][1] - laser_point[1]
distance = np.sqrt(dx*dx + dy*dy)
if distance < min_distance:
min_distance = distance
best_target = target
if best_target:
best_center = best_target['center']
best_radius = best_target['radius']
ellipse_params = best_target['ellipse']
method = "v3_ellipse_red_validated_laser_selected"
best_radius1 = best_radius * 5
else:
# 如果没有激光点,选择面积最大的目标
best_target = max(valid_targets, key=lambda t: t['area'])
best_center = best_target['center']
best_radius = best_target['radius']
ellipse_params = best_target['ellipse']
method = "v3_ellipse_red_validated"
best_radius1 = best_radius * 5
result_img = image.cv2image(img_cv, False, False)
return result_img, best_center, best_radius, method, best_radius1, ellipse_params
def estimate_distance(pixel_radius):
"""根据像素半径估算实际距离(单位:米)"""
if not pixel_radius:
return 0.0
return (config.REAL_RADIUS_CM * config.FOCAL_LENGTH_PIX) / pixel_radius / 100.0
def compute_laser_position(circle_center, laser_point, radius, method):
"""计算激光相对于靶心的偏移量(单位:厘米)"""
if not all([circle_center, radius, method]):
return None, None
cx, cy = circle_center
lx, ly = laser_point
# 根据检测方法动态调整靶心物理半径(简化模型)
circle_r = (radius / 4.0) * 20.0 if method == "模糊" else (68 / 16.0) * 20.0
dx = lx - cx
dy = ly - cy
return dx / (circle_r / 100.0), -dy / (circle_r / 100.0)
def save_shot_image(result_img, center, radius, method, ellipse_params,
laser_point, distance_m, photo_dir=None):
"""
保存射击图像带标注
即使没有检测到靶心也会保存图像文件名会标注 "no_target"
确保保存的图像总是包含激光十字线
Args:
result_img: 处理后的图像对象可能已经包含激光十字线或检测标注
center: 靶心中心坐标 (x, y)可能为 None未检测到靶心
radius: 靶心半径可能为 None未检测到靶心
method: 检测方法可能为 None未检测到靶心
ellipse_params: 椭圆参数 ((center, (width, height), angle)) None
laser_point: 激光点坐标 (x, y)
distance_m: 距离可能为 None未检测到靶心
photo_dir: 照片存储目录如果为None则使用 config.PHOTO_DIR
Returns:
str: 保存的文件路径如果保存失败或未启用则返回 None
"""
# 检查是否启用图像保存
if not config.SAVE_IMAGE_ENABLED:
return None
if photo_dir is None:
photo_dir = config.PHOTO_DIR
try:
# 确保照片目录存在
try:
if photo_dir not in os.listdir("/root"):
os.mkdir(photo_dir)
except:
pass
# 生成文件名
# 统计所有图片文件(包括 .bmp 和 .jpg
try:
all_images = [f for f in os.listdir(photo_dir) if f.endswith(('.bmp', '.jpg', '.jpeg'))]
img_count = len(all_images)
except:
img_count = 0
x, y = laser_point
# 如果未检测到靶心,在文件名中标注
if center is None or radius is None:
method_str = "no_target"
distance_str = "000"
else:
method_str = method or "unknown"
distance_str = str(round((distance_m or 0.0) * 100))
filename = f"{photo_dir}/{method_str}_{int(x)}_{int(y)}_{distance_str}_{img_count:04d}.bmp"
logger = logger_manager.logger
if logger:
if center and radius:
logger.info(f"结果 -> 圆心: {center}, 半径: {radius}, 方法: {method}")
if ellipse_params:
(ell_center, (width, height), angle) = ellipse_params
logger.info(f"椭圆 -> 中心: ({ell_center[0]:.1f}, {ell_center[1]:.1f}), 长轴: {max(width, height):.1f}, 短轴: {min(width, height):.1f}, 角度: {angle:.1f}°")
else:
logger.info(f"结果 -> 未检测到靶心,保存原始图像(激光点: ({x}, {y})")
# 转换图像为 OpenCV 格式以便绘制
img_cv = image.image2cv(result_img, False, False)
# 确保激光十字线被绘制使用OpenCV在图像上绘制确保可见性
laser_color = (config.LASER_COLOR[0], config.LASER_COLOR[1], config.LASER_COLOR[2])
thickness = max(config.LASER_THICKNESS, 2) # 至少2像素宽确保可见
length = max(config.LASER_LENGTH, 10) # 至少10像素长
# 绘制激光十字线(水平线)
cv2.line(img_cv,
(int(x - length), int(y)),
(int(x + length), int(y)),
laser_color, thickness)
# 绘制激光十字线(垂直线)
cv2.line(img_cv,
(int(x), int(y - length)),
(int(x), int(y + length)),
laser_color, thickness)
# 绘制激光点
cv2.circle(img_cv, (int(x), int(y)), max(thickness, 3), laser_color, -1)
# 如果检测到靶心,绘制靶心标注
if center and radius:
cx, cy = center
if ellipse_params:
(ell_center, (width, height), angle) = ellipse_params
cx_ell, cy_ell = int(ell_center[0]), int(ell_center[1])
# 绘制椭圆
cv2.ellipse(img_cv,
(cx_ell, cy_ell),
(int(width/2), int(height/2)),
angle,
0, 360,
(0, 255, 0),
2)
cv2.circle(img_cv, (cx_ell, cy_ell), 3, (255, 0, 0), -1)
# 绘制短轴
minor_length = min(width, height) / 2
minor_angle = angle + 90 if width >= height else angle
minor_angle_rad = math.radians(minor_angle)
dx_minor = minor_length * math.cos(minor_angle_rad)
dy_minor = minor_length * math.sin(minor_angle_rad)
pt1_minor = (int(cx_ell - dx_minor), int(cy_ell - dy_minor))
pt2_minor = (int(cx_ell + dx_minor), int(cy_ell + dy_minor))
cv2.line(img_cv, pt1_minor, pt2_minor, (0, 0, 255), 2)
else:
# 绘制圆形靶心
cv2.circle(img_cv, (cx, cy), radius, (0, 0, 255), 2)
cv2.circle(img_cv, (cx, cy), 2, (0, 0, 255), -1)
# 如果检测到靶心,绘制从激光点到靶心的连线(可选,用于可视化偏移)
cv2.line(img_cv, (int(x), int(y)), (cx, cy), (255, 255, 0), 1)
# 转换回 MaixPy 图像格式并保存
result_img = image.cv2image(img_cv, False, False)
result_img.save(filename)
if logger:
if center and radius:
logger.debug(f"图像已保存(含靶心标注): {filename}")
else:
logger.debug(f"图像已保存(无靶心,含激光十字线): {filename}")
return filename
except Exception as e:
logger = logger_manager.logger
if logger:
logger.error(f"保存图像失败: {e}")
import traceback
logger.error(traceback.format_exc())
return None